skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parthasarathy, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pulsar timing arrays (PTAs) are designed to detect low-frequency gravitational waves (GWs). GWs induce achromatic signals in PTA data, meaning that the timing delays do not depend on radio frequency. However, pulse arrival times are also affected by radio-frequency-dependent “chromatic” noise from sources such as dispersion measure (DM) and scattering delay variations. Furthermore, the characterization of GW signals may be influenced by the choice of chromatic noise model for each pulsar. To better understand this effect, we assess if and how different chromatic noise models affect the achromatic noise properties in each pulsar. The models we compare include existing DM models used by the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and noise models used for the European PTA Data Release 2 (EPTA DR2). We perform this comparison using a subsample of six pulsars from the NANOGrav 15 yr data set, selecting the same six pulsars as from the EPTA DR2 six-pulsar data set. We find that the choice of chromatic noise model noticeably affects the achromatic noise properties of several pulsars. This is most dramatic for PSR J1713+0747, where the amplitude of its achromatic red noise lowers from log 10 A RN = 14.1 0.1 + 0.1 to 14.7 0.5 + 0.3 , and the spectral index broadens from γ RN = 2.6 0.4 + 0.5 to γ RN = 3.5 0.9 + 1.2 . We also compare each pulsar's noise properties with those inferred from the EPTA DR2, using the same models. From the discrepancies, we identify potential areas where the noise models could be improved. These results highlight the potential for custom chromatic noise models to improve PTA sensitivity to GWs. 
    more » « less
  2. Abstract We have used X-ray data from the Neutron Star Interior Composition Explorer (NICER) to search for long-timescale temporal correlations (“red noise”) in the pulse times of arrival (TOAs) from the millisecond pulsars PSR J1824−2452A and PSR B1937+21. These data more closely track intrinsic noise because X-rays are unaffected by the radio-frequency-dependent propagation effects of the interstellar medium. Our search yields strong evidence (natural log Bayes factor of 9.634 ± 0.016) for red noise in PSR J1824−2452A, but the search is inconclusive for PSR B1937+21. In the interest of future X-ray missions, we devise and implement a method to simulate longer and higher-precision X-ray data sets to determine the timing baseline necessary to detect red noise. We find that the red noise in PSR B1937+21 can be reliably detected in a 5 yr mission with a TOA error of 2μs and an observing cadence of 20 observations per month compared to the 5μs TOA error and 11 observations per month that NICER currently achieves in PSR B1937+21. We investigate detecting red noise in PSR B1937+21 with other combinations of observing cadences and TOA errors. We also find that time-correlated red noise commensurate with an injected stochastic gravitational-wave background having an amplitude ofAGWB= 2 × 10−15and spectral index of timing residuals ofγGWB= 13/3 can be detected in a pulsar with similar TOA precision to PSR B1937+21. This is with no additional red noise in a 10 yr mission that observes the pulsar 15 times per month and has an average TOA error of 1μs. 
    more » « less